86 research outputs found

    The Discovery of 1000 km/s Outflows in Massive Post-starburst Galaxies at z=0.6

    Full text link
    Numerical simulations suggest that active galactic nuclei (AGNs) play an important role in the formation of early-type galaxies by expelling gas and dust in powerful galactic winds and quenching star formation. However, the existence of AGN feedback capable of halting galaxy-wide star formation has yet to be observationally confirmed. To investigate this question, we have obtained spectra of 14 post-starburst galaxies at z~0.6 to search for evidence of galactic winds. In 10/14 galaxies we detect Mg II 2796,2803 absorption lines which are blueshifted by 490 - 2020 km/s with respect to the stars. The median blueshift is 1140 km/s. We hypothesize that the outflowing gas represents a fossil galactic wind launched near the peak of the galaxy's activity, a few 100 Myr ago. The velocities we measure are intermediate between those of luminous starbursts and broad absorption line quasars, which suggests that feedback from an AGN may have played a role in expelling cool gas and shutting down star formation.Comment: 5 pages, 2 figures, accepted to ApJ Letter

    Unobscured Type 2 Active Galactic Nuclei

    Get PDF
    Type 2 active galactic nuclei (AGNs) with intrinsically weak broad emission lines (BELs) would be exceptions to the unified model. After examining a number of proposed candidates critically, we find that the sample is contaminated significantly by objects with BELs of strengths indicating that they actually contain intermediate-type AGNs, plus a few Compton-thick sources as revealed by extremely low ratios of X-ray to nuclear IR luminosities. We develop quantitative metrics that show two (NGC 3147 and NGC 4594) of the remaining candidates to have BELs 2-3 orders of magnitude weaker than those of typical type 1 AGNs. Several more galaxies remain as candidates to have anomalously weak BELs, but this status cannot be confirmed with the existing information. Although the parent sample is poorly defined, the two confirmed objects are well under 1% of its total number of members, showing that the absence of a BEL is possible, but very uncommon in AGN. We evaluate these two objects in detail using multi-wavelength measurements including new IR data obtained with Spitzer and ground-based optical spectropolarimeteric observations. They have little X-ray extinction with N_H < ~10^(21) cm^(–2). Their IR spectra show strong silicate emission (NGC 4594) or weak aromatic features on a generally power-law continuum with a suggestion of silicates in emission (NGC 3147). No polarized BEL is detected in NGC 3147. These results indicate that the two unobscured type 2 objects have circumnuclear tori that are approximately face-on. Combined with their X-ray and optical/UV properties, this behavior implies that we have an unobscured view of the nuclei and thus that they have intrinsically weak BELs. We compare their properties with those of the other less-extreme candidates. We then compare the distributions of bolometric luminosities and accretion rates of these objects with theoretical models that predict weak BELs

    Local Luminous Infrared Galaxies. III. Co-evolution of Black Hole Growth and Star Formation Activity?

    Full text link
    Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78Mpc). We estimate typical BH masses of 3x10^7 M_sun using [NeIII]15.56micron and optical [OIII]5007A gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs the current SFR is taking place not only in the inner nuclear ~1.5kpc region, as estimated from the nuclear 11.3micron PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar AGN luminosities. However, the majority of the IR-bright galaxies in the RSA Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All this suggests that in local LIRGs there is a distinct IR-bright star forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy.Comment: Accepted for publication in Ap

    High-Velocity Outflows Without Agn Feedback: Eddington-Limited Star Formation in Compact Massive Galaxies

    Get PDF
    We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit 1000 km s–1 outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we estimate star formation rate (SFR) surface densities that approach ΣSFR ≈ 3000 M ☉ yr–1 kpc–2, comparable to the Eddington limit from radiation pressure on dust grains. We argue that feedback associated with a compact starburst in the form of radiation pressure from massive stars and ram pressure from supernovae and stellar winds is sufficient to produce the high-velocity outflows we observe, without the need to invoke feedback from an active galactic nucleus

    Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4

    Get PDF
    We present results on gas flows in the halo of a Milky Way-like galaxy at z=0.413 based on high-resolution spectroscopy of a background galaxy. This is the first study of circumgalactic gas at high spectral resolution towards an extended background source (i.e., a galaxy rather than a quasar). Using longslit spectroscopy of the foreground galaxy, we observe spatially extended H alpha emission with circular rotation velocity v=270 km/s. Using echelle spectroscopy of the background galaxy, we detect Mg II and Fe II absorption lines at impact parameter rho=27 kpc that are blueshifted from systemic in the sense of the foreground galaxy's rotation. The strongest absorber EW(2796) = 0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight velocity dispersion (sigma=17 km/s) that are consistent with the observed properties of extended H I disks in the local universe. Our analysis of the rotation curve also suggests that this r=30 kpc gaseous disk is warped with respect to the stellar disk. In addition, we detect two weak Mg II absorbers in the halo with small velocity dispersions (sigma<10 km/s). While the exact geometry is unclear, one component is consistent with an extraplanar gas cloud near the disk-halo interface that is co-rotating with the disk, and the other is consistent with a tidal feature similar to the Magellanic Stream. We can place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the extended nature of the background source. We discuss the implications of these results for models of the geometry and kinematics of gas in the circumgalactic medium.Comment: 14 pages, 6 figures, submitted to ApJ, comments welcom

    SDSS-IV MaNGA : star-formation-driven biconical outflows in the local universe

    Get PDF
    We present a sample of 48 nearby galaxies with central, biconical outflows identified by the Mapping Nearby Galaxies at APO survey. All considered galaxies have star-formation-driven biconical (SFB) central outflows, with no signs of an active galactic nucleus. We find that the SFB outflows require high central concentration of the star formation rate. This increases the gas velocity dispersion over the equilibrium limit and helps maintain the gas outflows. The central starbursts increase the metallicity, extinction, and the [α/Fe] ratio in the gas. A significant amount of young stellar population at the centers suggests that the SFBs are associated with the formation of young bulges in galaxies. More than 70% of SFB galaxies are group members or have companions with no prominent interaction, or show asymmetry of external isophotes. In 15% of SFB cases, stars and gas rotate in the opposite directions, which points at the gas infall from satellites as the primary reason for triggering the SFB phenomena
    • …
    corecore